Balanced translocation in a patient with craniosynostosis disrupts the SOX6 gene and an evolutionarily conserved non-transcribed region.
نویسندگان
چکیده
Craniosynostosis is a congenital developmental disorder involving premature fusion of cranial sutures, which results in an abnormal shape of the skull. Significant progress in understanding the molecular basis of this phenotype has been made for a small number of syndromic craniosynostosis forms. Nevertheless, in the majority of the approximately 100 craniosynostosis syndromes and in non-syndromic craniosynostosis the underlying gene defects and pathomechanisms are unknown. Here we report on a male infant presenting at birth with brachycephaly, proptosis, midfacial hypoplasia, and low set ears. Three dimensional cranial computer tomography showed fusion of the lambdoid sutures and distal part of the sagittal suture with a gaping anterior fontanelle. Mutations in the genes for FGFR2 and FGFR3 were excluded. Standard chromosome analysis revealed a de novo balanced translocation t(9;11)(q33;p15). The breakpoint on chromosome 11p15 disrupts the SOX6 gene, known to be involved in skeletal growth and differentiation processes. SOX6 mutation screening of another 104 craniosynostosis patients revealed one missense mutation leading to the exchange of a highly conserved amino acid (p.D68N) in a single patient and his reportedly healthy mother. The breakpoint on chromosome 9 is located in a region without any known or predicted genes but, interestingly, disrupts patches of evolutionarily highly conserved non-genic sequences and may thus led to dysregulation of flanking genes on chromosome 9 or 11 involved in skull vault development. The present case is one of the very rare reports of an apparently balanced translocation in a patient with syndromic craniosynostosis, and reveals novel candidate genes for craniosynostoses and cranial suture formation.
منابع مشابه
A highly conserved SOX6 double binding site mediates SOX6 gene downregulation in erythroid cells
The Sox6 transcription factor plays critical roles in various cell types, including erythroid cells. Sox6-deficient mice are anemic due to impaired red cell maturation and show inappropriate globin gene expression in definitive erythrocytes. To identify new Sox6 target genes in erythroid cells, we used the known repressive double Sox6 consensus within the εy-globin promoter to perform a bioinfo...
متن کاملP-223: Analysis of Synaptonemal Complex Gene Disorders Involving in Recurrent Spontaneous Abortion
Background: Spontaneous abortion (SAb) is the most common complication of early pregnancy. Numerous risk factors are associated with an increased risk of pregnancy loss such as: Maternally age, previous spontaneous abortion, prolonged ovulation to implantation, Gravidity, Interval Prolonged time to pregnancy, Balanced chromosomal translocations and Genetic disorders. The aim of this study was t...
متن کاملBalanced Reciprocal Translocation t(X;1) in a Girl with Tall Stature and Primary Amenorrhea
AbstractChromosomal translocations constitute one of the most important, yet uncommon, causes of primary amenorrhea and gonadal dysgenesis. Although X-autosome translocations are frequently associated with streak gonads and clinical features of the Turner syndrome, the majority of X-autosome carriers may present with a variable phenotype, developmental delay, and recognizable X-linked syndrome ...
متن کاملSox6 enhances erythroid differentiation in human erythroid progenitors.
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant eryth...
متن کاملDisruption of the SCL gene by a t(1;3) translocation in a patient with T cell acute lymphoblastic leukemia
SCL gene disruptions are the most common chromosomal abnormality associated with the development of T cell acute lymphoblastic leukemia (ALL). Such disruptions can be the result of t(1;14) and t(1;7) translocations, as well as a cytogenetically undetectable interstitial deletion of chromosome 1. We present here a case of T cell ALL with a t(1;3)(p34;p21) translocation that also disrupts the SCL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical genetics
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2006